Geo-Steering Horizontal Wells: Case Studies Demonstrate the Value of Fuzzy Logic Directional Steering Guidance

Sandra Mark, Black Hills E&P, Golden, CO Michael S. Stoner, Stoner Engineering LLC, Golden, CO

> Rocky Mountain Section Meeting AAPG Snowbird, UT, October 8, 2007

Outline

- Geo-steering fundamentals, the process
- Technical Hole Deviation (THD)
- Fuzzy Logic for genuine steering guidance
- Case studies

Geo-steering a horizontal well is geological interpretation at its most stressful.

The objective of geo-steering interpretation is to describe the stratigraphic location of the wellbore as drilling progresses.

Directional Drilling Service Company Display – Lacks Detail

Measured Depth FT	Incl Angle Deg	Drift Direction Deg	True Vertical Depth	Vertical Section FT	N-S FT	E-W FT	C L O Distance FT	S U R E Direction Deg	Dogleg Severity Deg/100
									1
KOP-> 488	37' TVD Be	gin Build @	52.00°/ 100'						
4887.00	.00	19.27	4887.00	.00	.00	.00	.00	.00	.00
4897.00 4907.00 4917.00 4927.00 4927.00 4937.00 4947.00 4957.00	5.20 10.40 15.60 20.80 26.00 31.20 36.40	19.27 19.27 19.27 19.27 19.27 19.27 19.27 19.27	4896.99 4906.89 4916.63 4926.13 4935.30 4944.08 4952.39	.45 1.81 4.06 7.18 11.15 15.94 21.50	.43 1.71 3.83 6.78 10.53 15.04 20.29	.15 .60 1.34 2.37 3.68 5.26 7.09	.45 1.81 4.06 7.18 11.15 15.94 21.50	19.27 19.27 19.27 19.27 19.27 19.27 19.27 19.27	52.00 52.00 52.00 52.00 52.00 52.00 52.00 52.00
4967.00 4977.00	41.60 46.80	19.27 19.27	4960.15 4967.32	27.79 34.76	26.23 32.81	9.17 11.47	27.79 34.76	19.27 19.27	52.00 52.00
4987.00 4997.00 5007.00 5017.00 5027.00	52.00 57.20 62.40 67.60 72.80	19.27 19.27 19.27 19.27 19.27 19.27	4973.83 4979.62 4984.64 4988.87 4992.25	42.35 50.50 59.14 68.20 77.60	39.98 47.67 55.82 64.38 73.26	13.98 16.67 19.52 22.51 25.61	42.35 50.50 59.14 68.20 77.60	19.27 19.27 19.27 19.27 19.27	52.00 52.00 52.00 52.00 52.00 52.00

Spreadsheet-based tools are widely used by industry largely a drafting tool.

WellSight Software - Mudlog Display, still a drafting tool Sample detail but LWD Gamma Ray difficult to interpret

Geo-steering Requirements

- Depth-accurate formation evaluation measurements acquired with Logging While Drilling (LWD) tools, gamma in the Rockies.
- Type log (digital) from a nearby well or vertical pilot hole.
- Survey data from the directional drilling service company.
- Software that performs the mathematics necessary to allow correlation between type log and LWD data.

Geosteering...LWD signal mapping (or correlating)

Geosteering...LWD signal mapping (or correlating)

Take the interpretation to a new level with Technical Hole Deviation (THD)

Technical Hole Deviation (THD)

- Is the mathematical unification of planned versus actual directional well paths.
- Quantifies how a well path differs from plan (in greater detail than service company)
- When combined with the geo-steering interpretation through Fuzzy Logic processing, genuine steering guidance is provided.

THD...since 2000

- Technical Hole Deviation (THD)
 - Quantifies how a directional well path differs from its planned trajectory
 - Accommodates any type of directional drilling; any planned well path profile
- Provides Log & Table formats
- Geometry OR Geo-steer
- No distortion like vertical section projection

THD Components

THD Component	Description	Deviation "Sense"	eviation Sense" Unit		Lineal Deviation	Angular Deviation	Verbal Descriptor	
msVD	vertical deviation	Vertical	ft or m	1st	X		High/Low	
RCVD	relative change in vertical deviation	Vertical	ft/1000ft or m/304.8m	2nd	х		Positive/Negative	
msID	inclinational deviation	Vertical	deg	1st		х	High/Low	
RCID	relative change in inclinational deviation	Vertical	deg/100ft or deg/30.48m	2nd		х	Positive/Negative	
msHD	horizontal deviation	Horizontal	ft or m	1st	Х		Left/Right	
RCHD	relative change in horizontal deviation	Horizontal	ft/1000ft or m/304.8m	2nd	x		Positive/Negative	
ms AD	azimuthal deviation	Horizontal	deg	1st		х	High/Low	
RCAD	relative change in azimuthal deviation	n Horizontal deg/100ft 2nd or deg/30.48m			x	Positive/Negative		

Let's Get Fuzzy....

Fuzzy Logic, that is

Professor Lotfi A. Zadeh University of California, Berkeley Founder of Fuzzy Logic, first published in 1965

Fuzzy Logic

A type of logic that recognizes more than simple true and false values. Fuzzy logic works with ranges of values that represent degrees of truthfulness and falsehood; it resembles <u>human logic</u>.

Fuzzy Logic

For example, the statement, today is sunny, might be 100% true if there are no clouds, 80% true if there are a few clouds, 50% true if it's hazy and 0% true if it rains all day.

What do these commercial products have in common...

Fuzzy Logic for Steering—Utilizes THD

When THD data are combined with the geo-steering interpretation through Fuzzy Logic processing, genuine steering guidance is provided.

Steering Guidance

Output—Steering Guidance

Input—is THD

MD	A High/Low Side	A Right/Left Side	٧D	RCVD	ID	RCID -	HD	RCHD	AD	RCAD	L.
5888.00					1.14	0.1 -					ī
5920.00					0.97	-0.5 -					i
5950.00			1.33		-0.23	-4.0 -					
5981.00	Towards BUILD 80%	-	0.88	-14	-1.36	-3.6 -					-
6011.00	Towards BUILD 100%	-	-0.18	-35	-2.67	-4.4 -					-
6043.00	Towards BUILD 100%	-	-2.12	-61	-4.21	-4.8 -					-
6074.00	Towards BUILD 100%		-4.91	-91	-6.02	-5.9					-
6105.00	Towards BUILD 100%		-8.56	-120	-7.46	-4.7	-55.54		6.12		-
6135.00	Towards BUILD 100%	Towards LEFT 30%	-12.62	-139	-8.02	-1.9	-55.18	12	8.14	6.9	-
6165.00	Towards BUILD 90%	Towards RIGHT 20%	-16.80	-143	-7,86	0.5 -	-54.68	17	6.91	-4.2	-
6198.00	Towards BUILD 90%	Towards LEFT 30%	-21.32	-142	-7.74	0.4 -	-54.01	21	6.93	0.1	-
6229.00	Towards BUILD 100%	NO CHANGE	-25.55	-142	-7.81	-0.2 -	-53.28	24	6.05	-3.0	ł
6259.00	Towards BUILD 100%	Towards LEFT 40%	-29.72	-145	-7.96	-0.5 -	-52.39	31	7.87	6.3	-
6291.00	Towards BUILD 100%	Towards LEFT 40%	-34,52	-158	-8,86	-3.0 -	-50,90	49	11.83	13.0	-
6323.00	Towards BUILD 100%	Towards LEFT 50%	-39.95	-180	-9.83	-3.2 -	-48.76	71	14.55	9.1	-
6354.00	Towards BUILD 80%	Towards LEFT 20%	-45.41	-189	-9.48	1.2 -	-46.33	84	13.67	-3.1	-
6384.00	Towards BUILD 80%	NO CHANGE	-50.47	-182	-9.05	1.5 -	-43.92	87	12.00	-6.0	-
6416.00	Towards BUILD 80%	Towards LEFT 50%	-55.61	-174	-8,56	1.6 -	-41.24	91	11.92	-0.3	H
6447.00	Towards BUILD 80%	Towards LEFT 60%	-60.20	-162	-7.56	3.5 -	-38.36	101	11.92	0.0	-
6479.00	Towards BUILD 80%	Towards LEFT 30%	-64.43	-145	-6.71	2.9 -	-35.19	109	11.21	-2.4	-
6511.00	Towards BUILD 80%	Towards LEFT 50%	-68.25	-131	-6.02	2.3 -	-31.77	117	11.65	1.5	H
6542.00	Towards BUILD 90%	Towards LEFT 60%	-71.78	-126	-5.97	0.2 -	-28.07	132	12.27	2.2	H
6573.00	Towards BUILD 100%	Towards LEFT 40%	-75.35	-128	-6.16	-0.7 -	-24.15	140	11.97	-1.1	H
6603.00	Towards BUILD 80%	NO CHANGE	-78.41	-113	-4.53	6.0 -	-20.42	138	10.49	-5.5	
6634.00	Towards BUILD 80%	NO CHANGE	-80.58	-78	-2.79	6.2	-16.97	124	8.23	-8.1	H
6665.00	Towards BUILD 80%	NO CHANGE	-82.07	-53	-2.28	1.8 -	-14.18	100	6.03	-7.9	
6697.00	Towards BUILD 50%	Towards LEFT 10% -	-82,77	-24	0.01	7.9 -	-11.82	82	5.01	-3.5	-
6727.00	Towards DROP 60%	Towards LEFT 30%	-82.16	23	2.52	9.3 -	-9.78	76	4.60	-1.5	5
6759.00	Towards DROP 60%	Towards LEFT 60%	-80.56	55	3.39	3.0 -	-7.59	76	4.62	0.1	H
6771.00	Towards DROP 60%	Towards LEFT 60%	-79.76	74	4.45	9.8 -	-6.73	80	4.84	2.0	5
6855.00	Towards DROP 60%	Towards RIGHT 20%	-69.73	132	9.37	6.5 -	-2.46	56	1.63	-4.2	5
6887.00	Towards DROP 60%	Towards RIGHT 20% -	-64.41	183	9.79	1.5 -	-1.85	21	0.67	-3.3	5
6918.00	Towards DROP 40%	Towards RIGHT 40%	-59.15	186	9.74	-0.2 -	-1.80	2	-0.48	-4.1	H
6950.00	Towards DROP 60%	Towards RIGHT 20%	-53.63	188	10.14	1.4	-2.08	-10	-0.56	-0.3	
6980.00	Towards DROP 60%	Towards RIGHT 20%	-47.83	210	12.16	7.3 -	-2.40	-11	-0.65	-0.3	-
7011.00	Towards DROP 60%	Towards RIGHT 60%	-40.88	241	13.83	5.8 -	-3.01	-21	-1.62	-3.4	-
7042.00	NO CHANGE	Towards RIGHT 10% -	-33.80	244	12.58	-4.3 -	-3.74	-25	-1.09	1.8	-
7073.00	NO CHANGE	Towards RIGHT 60%	-27.25	223	11.85	-2.5 -	-4.50	-26	-1.71	-2.1	
7104.00	NO CHANGE	Towards RIGHT 10%	-21,32	200	10,22	-5.5 -	-5.25	-25	-1.09	2.1	-

Case Studies

Before geo-steering software, we were all clueless

Email from wellsite geologist Jan 23, 2007

Good morning,

We bumped the inclination up last night, about 8:30 pm, to 93 deg. The samples showed a drop in fluorescence and cut, which I decided that we were low in zone. Well, low we were not, at <u>MD 7771</u>' - TVD 7223.3' - Incl 92.1 - VS 597.6, the <u>gamma log reached 140 API</u> units. The samples collected were <u>95-100% shale</u> indicating that we <u>came out the top of zone</u>. We are sliding on the low side and coming back into zone.

"Post mortem"

THD, THD Logs, & FDDC Steering Guidance

Use Marker Bed for Planned TVD Calculate FDDC MEASURED DEPTH MEASURED DEPTH MEAS Steering Guidance 7200 7300 7700 8000 8100 Marker Bed 4 🔻 7100 7400 7500 7600 7900 7800 ∆ Right/Left Side MD ∆ High/Low Side 7194.00 Towards BUILD 30% Towards LEFT 50% 7204.00 Towards BUILD 30% Towards LEFT 50% Towards BUILD 30% Towards LEFT 50% 7214.00 7224.00 Towards BUILD 30% Towards LEFT 50% **MD 7771**' 7234.00 Towards BUILD 30% Towards LEFT 50% Towards BUILD 30% Towards LEFT 40% 7241.00 Towards LEFT 40% Towards BUILD 20% 7273.00 7304.00 Towards BUILD 20% Towards LEFT 30% 7335.00 Towards BUILD 30% Towards LEFT 20% Towards BUILD 40% Towards LEFT 20% 7367.00 7398.00 Towards BUILD 40% Towards LEFT 20% Towards BUILD 60% 7429.00 Towards LEFT 20% Towards LEFT 20% 7461.00 Towards BUILD 70% 7492.00 Towards BUILD 20% Towards LEFT 10% 7523.00 Towards DROP 40% Towards LEFT 20% 7555.00 Towards DROP 40% Towards LEFT 10% DROP! 7587.00 Towards DROP 60% Towards LEFT 10% 7616.00 Towards DROP 60% Towards LEFT 10% Drop-----7647.00 Towards DROP 70% Towards LEFT 10% 7678.00 Towards DROP 70% Towards LEFT 10% 7709.00 Towards DROP 70% Towards LEFT 10% 7741.00 Towards DROP 70% Towards LEFT 10% 7771.00 Towards DROP 70% Towards LEFT 10% Towards DROP 90% Towards LEFT 40% 7803.00 Towards DROP 80% Towards LEFT 90% 7834.00 7866.00 Towards DROP 80% Towards LEFT 90% 7897.00 Towards DROP 50% Towards LEFT 100% 7929.00 Towards DROP 10% Towards LEFT 90% 7960.00 Towards BUILD 60% Towards LEET 90% 7991.00 Towards BUILD 60% Towards LEFT 80% 8021.00 Towards BUILD 50% Towards LEFT 80% Landing 8051.00 NO CHANGE Towards LEFT 90% Out of Zone 8082.00 NO CHANGE Towards LEFT 90% 8114.00 Towards BUILD 80% Towards LEFT 80% 8145.00 Towards BUILD 90% Towards LEFT 60% Towards BUILD 10% Towards LEFT 70% 8176.00 8207.00 Towards DROP 20% Towards LEFT 90% 8239.00 Towards BUILD 80% Towards LEFT 40% NO CHANGE Towards LEET 60% 8270.00 8301.00 Towards DROP 80% Towards LEFT 40% 8333.00 Towards DROP 100% Towards LEFT 60% Towards LEFT 30% 8364.00 Towards DROP 10% 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000 8100 MEASURED DEPTH MEASURED DEPTH MEAS • 8400.00 Towards DROP 90% Towards LEFT 40%

Several months later, same field, next well, MD 9100...

We're high!! (technical geosteering)

We're low!! (eye-balling)

Another field --Gas confirms when in zone

Gas confirms when in zone

Recent horizontal drilling program look back

Feet in zone	10 day moving average after frac
825'	43 b/d
1000'	65 b/d
1375'	56 b/d

Photo from Sunburst Consulting Report, Robert Tilden, 2/3/06

Yet another field --Technical geo-steering corroborates wellsite geologist calls

Acknowledgments

- Co-Author Dr. Mike Stoner www.makinhole.com
- Black Hills Exploration & Production
 - Glen Luebking
 - Amber Buschman

